Asymmetric Dimethyl l-Arginine (ADMA) is a critical regulator of myocardial reperfusion injury

Markus C. Stühlinger, Elisabetta Conci, Bernhard J. Haubner, Eva Maria Stocker, Julia Schwaighofer, John P. Cooke, Philip S. Tsao, Otmar Pachinger, Bernhard Metzler

Research output: Contribution to journalArticlepeer-review

56 Scopus citations

Abstract

Objective: Endothelial dysfunction by the loss of nitric oxide (NO) is a critical event during reperfusion of ischemic myocardium. Reduced NO availability signals important pathophysiological changes leading to myocardial reperfusion injury. We have recently shown that NO biosynthesis can be disturbed by the endogenous NO synthase (NOS) inhibitor ADMA and that these changes are mediated by an impairment of its metabolism by dimethylarginine dimethylaminohydrolase (DDAH). We therefore analyzed the role of ADMA and its metabolism in the setting of myocardial ischemia and reperfusion. Methods: C57-bl6 mice underwent myocardial ischemia for exactly 30 min followed by 2, 4, 8, 12, 24, and 72 h of reperfusion achieved by occlusion and re-opening of the left coronary artery. The reperfused left ventricle was subsequently homogenized for measurements of determinants of the NO synthase pathway. Furthermore, the effects and its mechanisms of ADMA on reperfusion injury were analyzed in a genetic mouse model. Results: A significant accumulation of ADMA was found in myocardial tissue when mice were subjected to 30 min of ischemia followed by reperfusion in our in vivo model. The maximum increase of tissue ADMA at 4 h of reperfusion coincided with reductions of NO tissue concentrations and DDAH activity; protein expression of NOS isoforms, however, was not changed. Furthermore, DDAH overexpression in a genetic mouse model as well as treatment with oral l-arginine markedly reduced reperfusion injury by 40-50% at 4 h of reperfusion. The effects of ADMA on reperfusion injury were shown to be mediated by reduced eNOS activity and phosphorylation, expression of adhesion molecules, and leukocyte activity. Conclusion: Accumulation of tissue ADMA by impairment of DDAH was found to be a significant determinant of reperfusion injury. Our results indicate that ADMA could be a potential new target for the treatment of myocardial ischemia/reperfusion injury.

Original languageEnglish (US)
Pages (from-to)417-425
Number of pages9
JournalCardiovascular Research
Volume75
Issue number2
DOIs
StatePublished - Jul 15 2007

Keywords

  • Cell adhesion molecules
  • Endothelium
  • Infarction
  • Ischemia
  • Nitric oxide synthase

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine

Fingerprint

Dive into the research topics of 'Asymmetric Dimethyl l-Arginine (ADMA) is a critical regulator of myocardial reperfusion injury'. Together they form a unique fingerprint.

Cite this