Arsenic trioxide downregulates specificity protein (Sp) transcription factors and inhibits bladder cancer cell and tumor growth

Indira Jutooru, Gayathri Chadalapaka, Sandeep Sreevalsan, Ping Lei, Rola Barhoumi, Robert Burghardt, Stephen Safe

Research output: Contribution to journalArticlepeer-review

77 Scopus citations

Abstract

Arsenic trioxide exhibits antiproliferative, antiangiogenic and proapoptotic activity in cancer cells, and many genes associated with these responses are regulated by specificity protein (Sp) transcription factors. Treatment of cancer cells derived from urologic (bladder and prostate) and gastrointestinal (pancreas and colon) tumors with arsenic trioxide demonstrated that these cells exhibited differential responsiveness to the antiproliferative effects of this agent and this paralleled their differential repression of Sp1, Sp3 and Sp4 proteins in the same cell lines. Using arsenic trioxide-responsive KU7 and non-responsive 253JB-V bladder cancer cells as models, we show that in KU7 cells, ≤ 5μM arsenic trioxide decreased Sp1, Sp3 and Sp4 and several Sp-dependent genes and responses including cyclin D1, epidermal growth factor receptor, bcl-2, survivin and vascular endothelial growth factor, whereas at concentrations up to 15μM, minimal effects were observed in 253JB-V cells. Arsenic trioxide also inhibited tumor growth in athymic mice bearing KU7 cells as xenografts, and expression of Sp1, Sp3 and Sp4 was significantly decreased. Inhibitors of oxidative stress such as glutathione or dithiothreitol protected KU7 cells from arsenic trioxide-induced antiproliferative activity and Sp repression, whereas glutathione depletion sensitized 253JB-V cells to arsenic trioxide. Mechanistic studies suggested that arsenic trioxide-dependent downregulation of Sp and Sp-dependent genes was due to decreased mitochondrial membrane potential and induction of reactive oxygen species, and the role of peroxides in mediating these responses was confirmed using hydrogen peroxide.

Original languageEnglish (US)
Pages (from-to)2174-2188
Number of pages15
JournalExperimental Cell Research
Volume316
Issue number13
DOIs
StatePublished - Aug 2010

Keywords

  • Anticancer activity
  • Arsenic trioxide
  • ROS
  • Sp repression

ASJC Scopus subject areas

  • Cell Biology

Fingerprint

Dive into the research topics of 'Arsenic trioxide downregulates specificity protein (Sp) transcription factors and inhibits bladder cancer cell and tumor growth'. Together they form a unique fingerprint.

Cite this