TY - JOUR
T1 - Aroclor 1254 as a 2,3,7,8-tetrachlorodibenzo-p-dioxin antagonist
T2 - Effects on enzyme induction and immunotoxicity
AU - Bannister, R.
AU - Davis, D.
AU - Zacharewski, T.
AU - Tizard, I.
AU - Safe, S.
N1 - Funding Information:
The financial assistance of the National Institutes of Health (ES-03843) and the Texas Agricultural Experiment Station is gratefully acknowledged. The experimental assistance of Ms. B. Keys and Mrs. S. Safe is also appreciated.
Copyright:
Copyright 2014 Elsevier B.V., All rights reserved.
PY - 1987/10/12
Y1 - 1987/10/12
N2 - 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and Aroclor 1254 induced the cytochrome P-450 dependent monooxygenases, aryl hydrocarbon hydroxylase (AHH) and ethoxyresorufin O-deethylase (EROD) in rat hepatoma H-4-II E cells and C57BL/6J mice. It has been proposed that both Aroclor 1254 and 2,3,7,8-TCDD induce these enzymes via a common mechanism which features initial binding to the aryl hydrocarbon (Ah) cytosolic receptor protein. The major difference between these compounds was the relative potency (i.e. 2,3,7,8-TCDD ≫ Aroclor 1254). Cotreatment of rat hepatoma H-4-II E cells or C57BL/6J mice with a dose of 2,3,7,8-TCDD which submaximally induces AHH and EROD and a dose of Aroclor 1254 which exhibited little or no induction activity resulted in significant antagonism of the induction effect of 2,3,7,8-TCDD. For example, cotreatment of C57BL/6J mice with 2,3,7,8-TCDD (15 nmol/kg) and Aroclor 1254 (25, 75 and 150 μmol/kg) resulted in up to 23% antagonism of AHH induction by 2,3,7,8-TCDD. Moreover, cotreatment with a higher dose of the 2,3,7,8-TCDD agonist (30 or 50 nmol/kg) partially reversed some of the antagonism by Aroclor 1254. In vivo antagonism was observed only at Aroclor 1254/2,3,7,8-TCDD molar ratios of 1667:1, 5000:1 and 10 000:1. Administration of 2,3,7,8-TCDD (3.72 nmol/kg) to C57BL/6J mice resulted in a 76% decrease in the splenic plaque forming cell response to sheep red blood cells. This T-cell mediated immunotoxic effect of 2,3,7,8-TCDD segregates with the Ah locus. In contrast, administration of 5, 15, 75 and 150 μmol/kg of Aroclor 1254 resulted in impairment of the immune response only at the highest dose level. However, cotreatment of mice with 2,3,7,8-TCDD (3.72 nmol/kg) and Aroclor 1254 (5, 15 or 75 μmol/kg) resulted in no significant decrease in the plaque forming cell response and complete protection from the immunotoxicity of 2,3,7,8-TCDD. Cotreatment of the mice with Aroclor 1254 (75 μmol/kg) and a higher dose of the 2,3,7,8-TCDD agonist resulted in partial reversal of the protective effects of Aroclor 1254. The in vitro and in vivo data suggest that within specific antagonist/agonist dose ratios, Aroclor 1254 can antagonize at least 2 Ah receptor-mediated effects of 2,3,7,8-TCDD, namely AHH induction and immunotoxicity.
AB - 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and Aroclor 1254 induced the cytochrome P-450 dependent monooxygenases, aryl hydrocarbon hydroxylase (AHH) and ethoxyresorufin O-deethylase (EROD) in rat hepatoma H-4-II E cells and C57BL/6J mice. It has been proposed that both Aroclor 1254 and 2,3,7,8-TCDD induce these enzymes via a common mechanism which features initial binding to the aryl hydrocarbon (Ah) cytosolic receptor protein. The major difference between these compounds was the relative potency (i.e. 2,3,7,8-TCDD ≫ Aroclor 1254). Cotreatment of rat hepatoma H-4-II E cells or C57BL/6J mice with a dose of 2,3,7,8-TCDD which submaximally induces AHH and EROD and a dose of Aroclor 1254 which exhibited little or no induction activity resulted in significant antagonism of the induction effect of 2,3,7,8-TCDD. For example, cotreatment of C57BL/6J mice with 2,3,7,8-TCDD (15 nmol/kg) and Aroclor 1254 (25, 75 and 150 μmol/kg) resulted in up to 23% antagonism of AHH induction by 2,3,7,8-TCDD. Moreover, cotreatment with a higher dose of the 2,3,7,8-TCDD agonist (30 or 50 nmol/kg) partially reversed some of the antagonism by Aroclor 1254. In vivo antagonism was observed only at Aroclor 1254/2,3,7,8-TCDD molar ratios of 1667:1, 5000:1 and 10 000:1. Administration of 2,3,7,8-TCDD (3.72 nmol/kg) to C57BL/6J mice resulted in a 76% decrease in the splenic plaque forming cell response to sheep red blood cells. This T-cell mediated immunotoxic effect of 2,3,7,8-TCDD segregates with the Ah locus. In contrast, administration of 5, 15, 75 and 150 μmol/kg of Aroclor 1254 resulted in impairment of the immune response only at the highest dose level. However, cotreatment of mice with 2,3,7,8-TCDD (3.72 nmol/kg) and Aroclor 1254 (5, 15 or 75 μmol/kg) resulted in no significant decrease in the plaque forming cell response and complete protection from the immunotoxicity of 2,3,7,8-TCDD. Cotreatment of the mice with Aroclor 1254 (75 μmol/kg) and a higher dose of the 2,3,7,8-TCDD agonist resulted in partial reversal of the protective effects of Aroclor 1254. The in vitro and in vivo data suggest that within specific antagonist/agonist dose ratios, Aroclor 1254 can antagonize at least 2 Ah receptor-mediated effects of 2,3,7,8-TCDD, namely AHH induction and immunotoxicity.
KW - 2,3,7,8-TCDD
KW - Antagonism
KW - Aroclor 1254
UR - http://www.scopus.com/inward/record.url?scp=0023637761&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0023637761&partnerID=8YFLogxK
U2 - 10.1016/0300-483X(87)90135-1
DO - 10.1016/0300-483X(87)90135-1
M3 - Article
C2 - 3116725
AN - SCOPUS:0023637761
VL - 46
SP - 29
EP - 42
JO - Toxicology
JF - Toxicology
SN - 0300-483X
IS - 1
ER -