TY - JOUR
T1 - Antitumor efficacy and local distribution of doxorubicin via intratumoral delivery from polymer millirods
AU - Weinberg, Brent D.
AU - Ai, Hua
AU - Blanco, Elvin
AU - Anderson, James M.
AU - Gao, Jinming
PY - 2007/4
Y1 - 2007/4
N2 - The purpose of this study was to evaluate the antitumor efficacy and local drug distribution from doxorubicin-containing poly(D,L-lactide-co-glycolide) (PLGA) implants for intratumoral treatment of liver cancer in a rabbit model. Cylindrical polymer millirods (length 8 mm, diameter 1.5 mm) were produced using 65% PLGA, 21.5% NaCl, and 13.5% doxorubicin. These implants were placed in the center of VX2 liver tumors (n = 16, ∼8 mm in diameter) in rabbits. Tumors were removed 4 and 8 days after millirod implantation, and antitumor efficacy was assessed using tumor size measurements, tumor histology, and fluorescent measurement of drug distribution. The treated tumors were smaller than the untreated controls on both day 4 (0.17 ± 0.06 vs. 0.31 ± 0.08 cm2, p = 0.048) and day 8 (0.14 ± 0.04 vs. 1.8 ± 0.8 cm2, p = 0.025). Drug distribution profiles demonstrated high doxorubicin concentrations (>1000 μg/g) at the tumor core at both time points and drug penetration distances of 2.8 and 1.3 mm on day 4 and 8, respectively. Histological examination confirmed necrosis throughout the tumor tissue. Biodegradable polymer millirods successfully treated the primary tumor mass by providing high doxorubicin concentrations to the tumor tissue over an eight day period.
AB - The purpose of this study was to evaluate the antitumor efficacy and local drug distribution from doxorubicin-containing poly(D,L-lactide-co-glycolide) (PLGA) implants for intratumoral treatment of liver cancer in a rabbit model. Cylindrical polymer millirods (length 8 mm, diameter 1.5 mm) were produced using 65% PLGA, 21.5% NaCl, and 13.5% doxorubicin. These implants were placed in the center of VX2 liver tumors (n = 16, ∼8 mm in diameter) in rabbits. Tumors were removed 4 and 8 days after millirod implantation, and antitumor efficacy was assessed using tumor size measurements, tumor histology, and fluorescent measurement of drug distribution. The treated tumors were smaller than the untreated controls on both day 4 (0.17 ± 0.06 vs. 0.31 ± 0.08 cm2, p = 0.048) and day 8 (0.14 ± 0.04 vs. 1.8 ± 0.8 cm2, p = 0.025). Drug distribution profiles demonstrated high doxorubicin concentrations (>1000 μg/g) at the tumor core at both time points and drug penetration distances of 2.8 and 1.3 mm on day 4 and 8, respectively. Histological examination confirmed necrosis throughout the tumor tissue. Biodegradable polymer millirods successfully treated the primary tumor mass by providing high doxorubicin concentrations to the tumor tissue over an eight day period.
KW - Biodegradable polymer
KW - Intratumoral drug delivery
KW - Minimally invasive therapy
KW - Polymer implants
KW - VX2 tumor
UR - http://www.scopus.com/inward/record.url?scp=33947237268&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33947237268&partnerID=8YFLogxK
U2 - 10.1002/jbm.a.30914
DO - 10.1002/jbm.a.30914
M3 - Article
C2 - 17120197
AN - SCOPUS:33947237268
SN - 1549-3296
VL - 81
SP - 161
EP - 170
JO - Journal of Biomedical Materials Research - Part A
JF - Journal of Biomedical Materials Research - Part A
IS - 1
ER -