Anti-lymphangiogenesis for boosting drug accumulation in tumors

Chunling Wang, Junchao Xu, Xiaoyu Cheng, Ge Sun, Fenfen Li, Guangjun Nie, Yinlong Zhang

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The inadequate tumor accumulation of anti-cancer agents is a major shortcoming of current therapeutic drugs and remains an even more significant concern in the clinical prospects for nanomedicines. Various strategies aiming at regulating the intratumoral permeability of therapeutic drugs have been explored in preclinical studies, with a primary focus on vascular regulation and stromal reduction. However, these methods may trigger or facilitate tumor metastasis as a tradeoff. Therefore, there is an urgent need for innovative strategies that boost intratumoral drug accumulation without compromising treatment outcomes. As another important factor affecting drug tumor accumulation besides vasculature and stroma, the impact of tumor-associated lymphatic vessels (LVs) has not been widely considered. In the current research, we verified that anlotinib, a tyrosine kinase inhibitor with anti-lymphangiogenesis activity, and SAR131675, a selective VEGFR-3 inhibitor, effectively decreased the density of tumor lymphatic vessels in mouse cancer models, further enhancing drug accumulation in tumor tissue. By combining anlotinib with therapeutic drugs, including doxorubicin (Dox), liposomal doxorubicin (Lip-Dox), and anti-PD-L1 antibody, we observed improved anti-tumor efficacy in comparison with monotherapy regimens. Meanwhile, this strategy significantly reduced tumor metastasis and elicited stronger anti-tumor immune responses. Our work describes a new, clinically transferrable approach to augmenting intratumoral drug accumulation, which shows great potential to address the current, unsatisfactory efficacies of therapeutic drugs without introducing metastatic risk.

Original languageEnglish (US)
Article number89
JournalSignal Transduction and Targeted Therapy
Volume9
Issue number1
DOIs
StatePublished - Dec 2024

ASJC Scopus subject areas

  • Genetics
  • Cancer Research

Fingerprint

Dive into the research topics of 'Anti-lymphangiogenesis for boosting drug accumulation in tumors'. Together they form a unique fingerprint.

Cite this