Abstract
Despite the potential of nanodevices for intelligent drug delivery, it remains challenging to develop controllable therapeutic devices with high spatial-temporal selectivity. Here, we report a DNA nanodevice that can achieve tumor recognition and treatment with improved spatiotemporal precision under the regulation of orthogonal near-infrared (NIR) light. The nanodevice is built by combining an ultraviolet (UV) light-activatable aptamer module and a photosensitizer (PS) with up-conversion nanoparticle (UCNP) that enables the operation of the nanodevice with deep tissue-penetrable NIR light. The UCNPs can convert two distinct NIR excitations into orthogonal UV and green emissions for programmable photoactivation of the aptamer modules and PSs, respectively, allowing spatiotemporally controlled target recognition and photodynamic antitumor effect. Furthermore, when combined with immune checkpoint blockade therapy, the nanodevice results in regression of untreated distant tumors. This work provides a new approach for regulation of diagnostic and therapeutic activity at the right time and place.
Original language | English (US) |
---|---|
Article number | eaba9381 |
Journal | Science Advances |
Volume | 6 |
Issue number | 25 |
DOIs | |
State | Published - Jun 2020 |
ASJC Scopus subject areas
- General