Abstract
A novel approach is presented to model the interplay between the gas volume fraction (GVF) and the driving force of the pumping unit. A physics-based model is proposed to predict the down-hole pressure for a constant, but unknown GVF and given oil flow-rate out of the well. The identified down-hole pressure is used to model the saddle-bearings axial displacements, which are indicative of polished-rod loading. The imbalance between the data obtained from the detailed model of the pumping unit, and predicted bearing's displacements can be employed then to estimate the value of the GVF. The resulted GVF is incorporated into the suckerrod string dynamics to determine the natural frequency of the system. A control strategy is then used to adjust the pump speed to compensate for the GVF variations while avoiding the resonance frequency of the sucker-rod string. A low dimensional simulation is performed and the results are demonstrated for upstroke movement of the sucker-rod.
Original language | English (US) |
---|---|
Title of host publication | ASME 2014 Dynamic Systems and Control Conference, DSCC 2014 |
Publisher | American Society of Mechanical Engineers |
Volume | 3 |
ISBN (Print) | 9780791846209 |
DOIs | |
State | Published - 2014 |
Event | ASME 2014 Dynamic Systems and Control Conference, DSCC 2014 - San Antonio, United States Duration: Oct 22 2014 → Oct 24 2014 |
Other
Other | ASME 2014 Dynamic Systems and Control Conference, DSCC 2014 |
---|---|
Country/Territory | United States |
City | San Antonio |
Period | 10/22/14 → 10/24/14 |
ASJC Scopus subject areas
- Control and Systems Engineering
- Mechanical Engineering
- Industrial and Manufacturing Engineering