Introduction: Liver transplantation (LT) is an effective treatment for hepatocellular carcinoma (HCC), the most common type of primary liver cancer. Patients with small HCC (<5 cm) are given priority over others for transplantation due to clinical allocation policies based on tumor size. Attempting to shift from the prevalent paradigm that successful transplantation and longer disease-free survival can only be achieved in patients with small HCC to expanding the transplantation option to patients with HCC of the highest tumor burden (>5 cm), we developed a convergent artificial intelligence (AI) model that combines transient clinical data with quantitative histologic and radiomic features for more objective risk assessment of liver transplantation for HCC patients. Methods: Patients who received a LT for HCC between 2008–2019 were eligible for inclusion in the analysis. All patients with post-LT recurrence were included, and those without recurrence were randomly selected for inclusion in the deep learning model. Pre- and post-transplant magnetic resonance imaging (MRI) scans and reports were compressed using CapsNet networks and natural language processing, respectively, as input for a multiple feature radial basis function network. We applied a histological image analysis algorithm to detect pathologic areas of interest from explant tissue of patients who recurred. The multilayer perceptron was designed as a feed-forward, supervised neural network topology, with the final assessment of recurrence risk. We used area under the curve (AUC) and F-1 score to assess the predictability of different network combinations. Results: A total of 109 patients were included (87 in the training group, 22 in the testing group), of which 20 were positive for cancer recurrence. Seven models (AUC; F-1 score) were generated, including clinical features only (0.55; 0.52), magnetic resonance imaging (MRI) only (0.64; 0.61), pathological images only (0.64; 0.61), MRI plus pathology (0.68; 0.65), MRI plus clinical (0.78, 0.75), pathology plus clinical (0.77; 0.73), and a combination of clinical, MRI, and pathology features (0.87; 0.84). The final combined model showed 80 % recall and 89 % precision. The total accuracy of the implemented model was 82 %. Conclusion: We validated that the deep learning model combining clinical features and multi-scale histopathologic and radiomic image features can be used to discover risk factors for recurrence beyond tumor size and biomarker analysis. Such a predictive, convergent AI model has the potential to alter the LT allocation system for HCC patients and expand the transplantation treatment option to patients with HCC of the highest tumor burden.

Original languageEnglish (US)
Article number101894
JournalComputerized Medical Imaging and Graphics
StatePublished - Apr 2021


  • Deep learning
  • Hepatocellular carcinoma
  • Liver transplantation
  • Recurrence risk

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging
  • Computer Vision and Pattern Recognition
  • Health Informatics
  • Computer Graphics and Computer-Aided Design


Dive into the research topics of 'An imageomics and multi-network based deep learning model for risk assessment of liver transplantation for hepatocellular cancer'. Together they form a unique fingerprint.

Cite this