TY - JOUR
T1 - An aptamer-array-based sample-to-answer biosensor for ochratoxin a detection via fluorescence resonance energy transfer
AU - Li, Yongning
AU - Peng, Zhenfei
AU - Li, Yaxi
AU - Xiao, Min
AU - Tan, Gongjun
AU - Wang, Wenlian
AU - Wang, Yu
AU - Fang, Min
AU - Zhang, Shu
AU - Tang, Chenling
AU - Yang, Bowen
AU - Wu, Tianfu
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/11
Y1 - 2021/11
N2 - Food toxins are a hidden threat that can cause cancer and tremendously impact human health. Therefore, the detection of food toxins in a timely manner with high sensitivity is of paramount importance for public health and food safety. However, the current detection methods are relatively time-consuming and not practical for field tests. In the present work, we developed a novel aptamer-chip-based sample-to-answer biosensor (ACSB) for ochratoxin A (OTA) detection via fluorescence resonance energy transfer (FRET). In this system, a cyanine 3 (Cy3)-labeled OTA-specific biotinylated aptamer was immobilized on an epoxy-coated chip via streptavidin-biotin binding. A complementary DNA strand to OTA aptamer at the 3′-end was labeled with a black hole quencher 2 (BHQ2) to quench Cy3 fluorescence when in proximity. In the presence of OTA, the Cy3-labeled OTA aptamer bound specifically to OTA and led to the physical separation of Cy3 and BHQ2, which resulted in an increase of fluorescence signal. The limit of detection (LOD) of this ACSB for OTA was 0.005 ng/mL with a linearity range of 0.01–10 ng/mL. The cross-reactivity of ACSB against other mycotoxins, ochratoxin B (OTB), aflatoxin B1 (AFB1), zearalenone (ZEA), or deoxynilvalenol (DON), was less than 0.01%. In addition, this system could accurately detect OTA in rice samples spiked with OTA, and the mean recovery rate of the spiked-in OTA reached 91%, with a coefficient of variation (CV) of 8.57–9.89%. Collectively, the ACSB may represent a rapid, accurate, and easy-to-use platform for OTA detection with high sensitivity and specificity.
AB - Food toxins are a hidden threat that can cause cancer and tremendously impact human health. Therefore, the detection of food toxins in a timely manner with high sensitivity is of paramount importance for public health and food safety. However, the current detection methods are relatively time-consuming and not practical for field tests. In the present work, we developed a novel aptamer-chip-based sample-to-answer biosensor (ACSB) for ochratoxin A (OTA) detection via fluorescence resonance energy transfer (FRET). In this system, a cyanine 3 (Cy3)-labeled OTA-specific biotinylated aptamer was immobilized on an epoxy-coated chip via streptavidin-biotin binding. A complementary DNA strand to OTA aptamer at the 3′-end was labeled with a black hole quencher 2 (BHQ2) to quench Cy3 fluorescence when in proximity. In the presence of OTA, the Cy3-labeled OTA aptamer bound specifically to OTA and led to the physical separation of Cy3 and BHQ2, which resulted in an increase of fluorescence signal. The limit of detection (LOD) of this ACSB for OTA was 0.005 ng/mL with a linearity range of 0.01–10 ng/mL. The cross-reactivity of ACSB against other mycotoxins, ochratoxin B (OTB), aflatoxin B1 (AFB1), zearalenone (ZEA), or deoxynilvalenol (DON), was less than 0.01%. In addition, this system could accurately detect OTA in rice samples spiked with OTA, and the mean recovery rate of the spiked-in OTA reached 91%, with a coefficient of variation (CV) of 8.57–9.89%. Collectively, the ACSB may represent a rapid, accurate, and easy-to-use platform for OTA detection with high sensitivity and specificity.
KW - Aptamer
KW - FRET
KW - Ochratoxin A
KW - On-chip assay
UR - http://www.scopus.com/inward/record.url?scp=85119114438&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85119114438&partnerID=8YFLogxK
U2 - 10.3390/chemosensors9110309
DO - 10.3390/chemosensors9110309
M3 - Article
AN - SCOPUS:85119114438
SN - 2227-9040
VL - 9
JO - Chemosensors
JF - Chemosensors
IS - 11
M1 - 309
ER -