American College of Cardiology/Society for Cardiac Angiography and Interventions Clinical Expert Consensus Document on Cardiac Catheterization Laboratory Standards: A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents

T. M. Bashore, E. R. Bates, P. B. Berger, D. A. Clark, J. T. Cusma, G. J. Dehmer, M. J. Kern, W. K. Laskey, M. P. O'Laughlin, S. Oesterle, J. J. Popma, R. A. O'Rourke, J. Abrams, B. R. Brodie, P. S. Douglas, G. Gregoratos, M. A. Hlatky, J. S. Hochman, S. Kaul, C. M. TracyD. D. Waters, Jr Winters, William L. Winters

Research output: Contribution to journalReview articlepeer-review

298 Scopus citations


A. The Cardiac Catheterization Laboratory Environment: Cardiac catheterizations are currently performed safely in hospitals with and without cardiac surgical backup. The latest information from the SCA & I lists >2,100 cardiac catheterization laboratories in the U.S. (including Puerto Rico and the Virgin Islands) (1). Of these, 72% provided on-site cardiac surgery (including 85% of those performing coronary intervention). Fifty-eight laboratories were located in nonhospital settings. In a hospital with cardiac surgery, essentially all patients with cardiovascular disease can undergo invasive studies safely. Full support services include not only cardiovascular surgery but also vascular surgery, nephrology and dialysis, neurology, hematology, and specialized imaging services (e.g., computed tomography, magnetic resonance imaging, and ultrasound). See Table 7 for assessment of proficiency criteria for individual operators and cardiac catheterization laboratories. In the hospital setting without cardiac surgery capability, many patients can undergo cardiac procedures safely. Exclusions for cardiac catheterization in this setting include patients with acute coronary syndromes, severe congestive heart failure, pulmonary edema due to acute ischemia, a high likelihood of severe multivessel or left main disease based on noninvasive testing, and severe left ventricular dysfunction associated with valvular disease. Certain elective therapeutic interventional procedures such as percutaneous coronary interventions (PCIs) and valvuloplasty should still be performed in facilities that provide cardiac surgical support. The ACC Competence Statement on Recommendations for the Assessment and Maintenance of Proficiency in Coronary Interventional Procedures and the ACC/AHA Guidelines for PCI Procedures (2,3) have addressed the issue of primary angioplasty for acute myocardial infarction in hospitals without cardiac surgery capability. Recent data suggest a lower mortality rate among patients undergoing primary angioplasty in higher-volume centers (4). Hospitals that perform primary angioplasty but are without on-site cardiac surgery capability must have a proven plan for rapid access (within 1 h) to a cardiac surgical operating room in a nearby facility with appropriate hemodynamic support capability for such a transfer. The procedure should be limited to patients with ST-segment elevation MI or new LBBB on ECG, and done in a timely fashion (balloon inflation within 90 ± 30 min of admission) by persons skilled in the procedure (≥75 PCIs performed/year) and only in facilities performing a minimum of 36 primary PCIs/year. In accordance with the soon-to-be-published ACC/AHA guidelines for PCI (3), this committee does not endorse the performance of elective PCI in a facility without cardiac surgery capability. Patients are also being studied in freestanding laboratories (i.e., those that are not physically attached to the hospital). By definition a freestanding laboratory is one where quick transportation of a patient to a hospital by gurney is not possible. These patients clearly must be in stable condition and at the lowest risk for complications. It is vitally important to have mechanisms for backup and bailout in place to provide assistance should patients become unstable in this setting. Although a tertiary hospital serves as an appropriate means for providing proper oversight of a freestanding laboratory, recognized credentialing bodies approved by the local community may be able to provide appropriate oversight to ensure that all issues related to quality assurance (QA) are monitored and addressed. Interventional procedures of any kind should not be performed in a freestanding facility. B. Same-Day and Outpatient Cardiac Catheterization: With the decline in risk associated with cardiac catheterization, the performance of invasive procedures in the ambulatory setting has become more popular. However, prehospitalization may still be important in patients receiving anticoagulation therapy or in those with renal failure, diabetes, or a contrast allergy. Early discharge after the procedure may also be inappropriate for certain patients, including those with a procedure-related complication or hemodynamic instability. In addition, some patients are best observed overnight if severe disease is discovered (e.g., significant left main coronary artery disease or severe aortic stenosis) or in the presence of significant comorbid diseases that increase the risk of late complications. A general scheme is presented to help determine who should be excluded from early discharge after cardiac catheterization. C. QA Issues: Quality assurance starts with an assessment of clinical proficiency among the operators in the cardiac catheterization laboratory. This is surely one of the most difficult elements to assess, but issues of cognitive knowledge, procedural skill, clinical judgment, and procedural outcomes are all important. QA extends to the performance of the laboratory as a whole. A continuous quality-improvement (QI) program should also be included in the laboratory's overall design. One measure of outcome is the number of "normal" diagnostic cardiac catheterizations performed. "Normal" in this regard refers to no disease or insignificant (<50% diameter narrowing) coronary stenoses in patients studied primarily for the identification of coronary artery lesions. It is recognized that there is a difference between coronary arteries that are completely normal and those that have insignificant luminal stenoses. It is further recognized that coronary disease is a dynamic process and that endothelial dysfunction may contribute to certain clinical syndromes. In some laboratories "normal" coronary arteries may be especially prevalent because the patient mix includes a variety of disease states where coronary disease is not the major concern such as cardiomyopathy and valvular disease. The rate of "normals" identified as either insignificant or no obvious luminal narrowing should be in the range of 20% to 27% if proper screening and baseline decision making is operative prior to the catheterization. Outcomes related to complications for diagnostic catheterization should be very low-<1%. Diagnostic accuracy and adequacy are obviously important parameters as well, though they are rarely tracked. In the interventional cardiac catheterization laboratory the acceptable complication rates are more difficult to gauge, since measures of assessing high-risk patients have not been standardized. Major complications, (i.e., death, acute myocardial infarction, and emergency bypass surgery) from interventional procedures should be <3%. The minimum number of studies needed to confirm adequate skills in cardiac diagnostic catheterization procedures has never been validated. Given the low risk of diagnostic catheterization, the QI system should be operative and should hold precedence over any arbitrary figures proposed in this setting. The Committee could find no data to support the prior recommendation for a minimum caseload of 150 catheterizations performed by an individual per year. A minimum interventional caseload is 75 cases/year per operator and ideally 400 cases/year for the laboratory. Because of the direct correlation between both laboratory and physician volume and outcomes, a low-volume operator (<75 cases/year) should only work in a high-volume laboratory (>600 cases/year), and even then with mentoring. Low-volume operators in any other setting should not perform interventional procedures. The minimum case-load for operators performing pediatric catheterizations has not been established by data, although a caseload of 50/year has been suggested for individual operators. Pediatric cardiac catheterization laboratories often share space with adult procedural facilities. The pediatric catheterization laboratory should perform at least 75 procedures/year. Equipment maintenance and management remain an issue, and certain guidelines are provided. Each aspect of the radiographic system should be able to meet these performance expectations. The same is true for the physiological recorders and other specific devices used in the laboratories. A QI program must be in place. The keys are to develop variables that reflect the quality of care, to collect these variables in a systematic manner, to have a means for statistical analysis of the results, and to develop an approach to problem solving that involves feedback on the effectiveness of the solutions. These programs should provide ongoing educational opportunities for staff as well. The Committee also strongly encourages all laboratories to participate in a national data registry to help benchmark their results and provide an ongoing system for tracking complications.

Original languageEnglish (US)
Pages (from-to)2170-2214
Number of pages45
JournalJournal of the American College of Cardiology
Issue number8
StatePublished - Jun 15 2001

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine


Dive into the research topics of 'American College of Cardiology/Society for Cardiac Angiography and Interventions Clinical Expert Consensus Document on Cardiac Catheterization Laboratory Standards: A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents'. Together they form a unique fingerprint.

Cite this