TY - JOUR
T1 - Altered fidelity of mitotic chromosome transmission in cell cycle mutants of S. cerevisiae
AU - Hartwell, L. H.
AU - Smith, D.
N1 - Copyright:
Copyright 2004 Elsevier B.V., All rights reserved.
PY - 1985
Y1 - 1985
N2 - Thirteen of 14 temperature-sensitive mutants deficient in successive steps of mitotic chromosome transmission (cdc2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17 and 20) from spindle pole body separation to a late stage of nuclear division exhibited a dramatic increase in the frequency of chromosome loss and/or mitotic recombination when they were grown at their maximum permissive temperatures. The increase in chromosome loss and/or recombination is likely to be due to the deficiency of functional gene product rather than to an aberrant function of the mutant gene product since the mutant alleles are, with one exception, recessive to the wild-type allele for this phenotype. The generality of this result suggests that a delay in almost any stage of chromosome replication or segregation leads to a decrease in the fidelity of mitotic chromosome transmission. In contrast, temperature-sensitive mutants defective in the control step of the cell cycle (cdc28), in cytokinesis (cd3) or in protein synthesis (ils1) did not exhibit increased recombination or chromosome loss. - Based upon previous results with mutants and DNA-damaging agents in a variety of organisms, we suggest that the induction of mitotic recombination in certain mutants is due to the action of a repair pathway upon nicks or gaps left in the DNA. This interpretation is supported by the fact that the induced recombination is dependent upon the RAD52 gene product, an essential component in the recombinogenic DNA repair pathway. Gene products whose deficiency leads to induced recombination are, therefore, strong candidates for proteins that function in DNA metabolism. Among the mutants that induce recombination are those known to be defective in some aspect of DNA replication (cd2, 6, 8, 9) as well as some mutants defective in the G2 (cdc13 and 17) and M (cdc5 and 14) phases of the mitotic cycle. We suggest that special aspects of DNA metabolism may be occurring in G2 and M in order to prepare the chromosomes for proper segregation.
AB - Thirteen of 14 temperature-sensitive mutants deficient in successive steps of mitotic chromosome transmission (cdc2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17 and 20) from spindle pole body separation to a late stage of nuclear division exhibited a dramatic increase in the frequency of chromosome loss and/or mitotic recombination when they were grown at their maximum permissive temperatures. The increase in chromosome loss and/or recombination is likely to be due to the deficiency of functional gene product rather than to an aberrant function of the mutant gene product since the mutant alleles are, with one exception, recessive to the wild-type allele for this phenotype. The generality of this result suggests that a delay in almost any stage of chromosome replication or segregation leads to a decrease in the fidelity of mitotic chromosome transmission. In contrast, temperature-sensitive mutants defective in the control step of the cell cycle (cdc28), in cytokinesis (cd3) or in protein synthesis (ils1) did not exhibit increased recombination or chromosome loss. - Based upon previous results with mutants and DNA-damaging agents in a variety of organisms, we suggest that the induction of mitotic recombination in certain mutants is due to the action of a repair pathway upon nicks or gaps left in the DNA. This interpretation is supported by the fact that the induced recombination is dependent upon the RAD52 gene product, an essential component in the recombinogenic DNA repair pathway. Gene products whose deficiency leads to induced recombination are, therefore, strong candidates for proteins that function in DNA metabolism. Among the mutants that induce recombination are those known to be defective in some aspect of DNA replication (cd2, 6, 8, 9) as well as some mutants defective in the G2 (cdc13 and 17) and M (cdc5 and 14) phases of the mitotic cycle. We suggest that special aspects of DNA metabolism may be occurring in G2 and M in order to prepare the chromosomes for proper segregation.
UR - http://www.scopus.com/inward/record.url?scp=0021796842&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0021796842&partnerID=8YFLogxK
M3 - Article
C2 - 3894160
AN - SCOPUS:0021796842
VL - 110
SP - 381
EP - 395
JO - Genetics
JF - Genetics
SN - 0016-6731
IS - 3
ER -