Aldehyde Dehydrogenase 2 Activator Augments the Beneficial Effects of Empagliflozin in Mice with Diabetes-Associated HFpEF

Guodong Pan, Bipradas Roy, Shailendra Giri, David E. Lanfear, Rajarajan A. Thandavarayan, Ashrith Guha, Pablo A. Ortiz, Suresh Selvaraj Palaniyandi

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


To ameliorate diabetes mellitus-associated heart failure with preserved ejection fraction (HFpEF), we plan to lower diabetes-mediated oxidative stress-induced 4-hydroxy-2-nonenal (4HNE) accumulation by pharmacological agents that either decrease 4HNE generation or increase its detoxification.A cellular reactive carbonyl species (RCS), 4HNE, was significantly increased in diabetic hearts due to a diabetes-induced decrease in 4HNE detoxification by aldehyde dehydrogenase (ALDH) 2, a cardiac mitochondrial enzyme that metabolizes 4HNE. Therefore, hyperglycemia-induced 4HNE is critical for diabetes-mediated cardiotoxicity and we hypothesize that lowering 4HNE ameliorates diabetes-associated HFpEF. We fed a high-fat diet to ALDH2*2 mice, which have intrinsically low ALDH2 activity, to induce type-2 diabetes. After 4 months of diabetes, the mice exhibited features of HFpEF along with increased 4HNE adducts, and we treated them with vehicle, empagliflozin (EMP) (3 mg/kg/d) to reduce 4HNE and Alda-1 (10 mg/kg/d), and ALDH2 activator to enhance ALDH2 activity as well as a combination of EMP + Alda-1 (E + A), via subcutaneous osmotic pumps. After 2 months of treatments, cardiac function was assessed by conscious echocardiography before and after exercise stress. EMP + Alda-1 improved exercise tolerance, diastolic and systolic function, 4HNE detoxification and cardiac liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) pathways in ALDH2*2 mice with diabetes-associated HFpEF. This combination was even more effective than EMP alone. Our data indicate that ALDH2 activation along with the treatment of hypoglycemic agents may be a salient strategy to alleviate diabetes-associated HFpEF.

Original languageEnglish (US)
Article number10439
JournalInternational journal of molecular sciences
Issue number18
StatePublished - Sep 9 2022


  • 4-hydroxy-2-nonenal
  • ALDH2*2 mutant mice
  • Alda-1
  • HFpEF
  • aldehyde dehydrogenase 2
  • cardiac function
  • diabetes
  • empagliflozin
  • heart failure
  • Benzhydryl Compounds
  • Aldehyde Dehydrogenase/metabolism
  • Diabetes Mellitus, Type 2/complications
  • Stroke Volume
  • Heart Failure/drug therapy
  • Animals
  • Mice
  • AMP-Activated Protein Kinases/metabolism
  • Aldehyde Dehydrogenase, Mitochondrial/genetics
  • Hypoglycemic Agents/pharmacology
  • Glucosides

ASJC Scopus subject areas

  • Molecular Biology
  • Spectroscopy
  • Catalysis
  • Inorganic Chemistry
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry


Dive into the research topics of 'Aldehyde Dehydrogenase 2 Activator Augments the Beneficial Effects of Empagliflozin in Mice with Diabetes-Associated HFpEF'. Together they form a unique fingerprint.

Cite this