Abstract
Accumulating evidence indicates that the APOA1 binding protein (AIBP)—a secreted protein—plays a profound role in lipid metabolism. Interestingly, AIBP also functions as an NAD(P)H-hydrate epimerase to catalyze the interconversion of NAD(P)H hydrate [NAD(P)HX] epimers and is renamed as NAXE. Thus, we call it NAXE hereafter. We investigated its role in NAD(P)H-involved metabolism in murine cardiomyocytes, focusing on the metabolism of hexose, lipids, and amino acids as well as mitochondrial redox function. Unbiased metabolite profiling of cardiac tissue shows that NAXE knockout markedly upregulates the ketone body 3-hydroxybutyric acid (3-HB) and increases or trends increasing lipid-associated metabolites cholesterol, α-linolenic acid and deoxycholic acid. Paralleling greater ketone levels, ChemRICH analysis of the NAXE-regulated metabolites shows reduced abundance of hexose despite similar glucose levels in control and NAXE-deficient blood. NAXE knockout reduces cardiac lactic acid but has no effect on the content of other NAD(P)H-regulated metabolites, including those associated with glucose metabolism, the pentose phosphate pathway, or Krebs cycle flux. Although NAXE is present in mitochondria, it has no apparent effect on mitochondrial oxidative phosphorylation. Instead, we detected more metabolites that can potentially improve cardiac function (3-HB, adenosine, and α-linolenic acid) in the Naxe−/− heart; these mice also perform better in aerobic exercise. Our data reveal a new role of NAXE in cardiac ketone and lipid metabolism.
Original language | English (US) |
---|---|
Article number | 3643 |
Journal | Cells |
Volume | 11 |
Issue number | 22 |
DOIs | |
State | Published - Nov 17 2022 |
Keywords
- AIBP/NAXE
- NAD(P)HX epimerase
- cardiac tissue
- mitochondrial respiration
- untargeted metabolite profiling
- Animals
- Ketones
- Cell Respiration
- Racemases and Epimerases
- Mice
- alpha-Linolenic Acid
- NAD/metabolism
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)