Adaptive SVM+: Learning with privileged information for domain adaptation

Nikolaos Sarafianos, Michalis Vrigkas, Ioannis A. Kakadiaris

Research output: Chapter in Book/Report/Conference proceedingConference contribution

22 Scopus citations

Abstract

Incorporating additional knowledge in the learning process can be beneficial for several computer vision and machine learning tasks. Whether privileged information originates from a source domain that is adapted to a target domain, or as additional features available at training time only, using such privileged (i.e., auxiliary) information is of high importance as it improves the recognition performance and generalization. However, both primary and privileged information are rarely derived from the same distribution, which poses an additional challenge to the recognition task. To address these challenges, we present a novel learning paradigm that leverages privileged information in a domain adaptation setup to perform visual recognition tasks. The proposed framework, named Adaptive SVM+, combines the advantages of both the learning using privileged information (LUPI) paradigm and the domain adaptation framework, which are naturally embedded in the objective function of a regular SVM. We demonstrate the effectiveness of our approach on the publicly available Animals with Attributes and INTERACT datasets and report state-of-the-art results in both of them.

Original languageEnglish (US)
Title of host publicationProceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2637-2644
Number of pages8
ISBN (Electronic)9781538610343
DOIs
StatePublished - Jul 1 2017
Event16th IEEE International Conference on Computer Vision Workshops, ICCVW 2017 - Venice, Italy
Duration: Oct 22 2017Oct 29 2017

Publication series

NameProceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017
Volume2018-January

Conference

Conference16th IEEE International Conference on Computer Vision Workshops, ICCVW 2017
Country/TerritoryItaly
CityVenice
Period10/22/1710/29/17

ASJC Scopus subject areas

  • Computer Science Applications
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Adaptive SVM+: Learning with privileged information for domain adaptation'. Together they form a unique fingerprint.

Cite this