Action-Based Scheduling: Leveraging App Interactivity for Scheduler Efficiency

John Tadrous, Atilla Eryilmaz, Ashutosh Sabharwal

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

The dominant portion of smartphone traffic is generated by apps that involve human interactivity. Particularly, when human users receive information from a server, they spend a few seconds of information processing before taking an action. The user processing time creates an idle communication period during the app session. Moreover, the generation of the future traffic depends on the service of the current query-response pair. In this paper, we aim at leveraging the properties of such interactions to reap quality-of-experience gains. Existing schedulers, both in practice and theory, are not designed in view of the aforementioned traffic characteristics. Theoretical works predominantly focus on scheduling of traffic that is either generated independently or directly controlled, but not governed by the specific dynamics caused by human interactions. Schedulers in practice, on the other hand, employ round-robin and processor-sharing methods to serve multiple ongoing sessions. We show that neither of these approaches is effective for serving apps that involve human interactivity. Instead, we show that optimal scheduling for interactive traffic is non-randomized over packets, which we call action-based, as it avoids breaking ongoing service of actions in order to align human response times with the service of other actions. Since the design of optimal action-based policy is computationally prohibitive, we develop low-complexity suboptimal action-based policies that are optimal for two ongoing sessions. Our numerical studies based on a real-data trace reveal that our proposed action-based policies can reduce total delay by 22% with respect to packet-based equal processor sharing.

Original languageEnglish (US)
Article number8571178
Pages (from-to)112-125
Number of pages14
JournalIEEE/ACM Transactions on Networking
Volume27
Issue number1
DOIs
StatePublished - Feb 2019

Keywords

  • Interactive apps
  • non-convex optimization
  • scheduling

ASJC Scopus subject areas

  • Software
  • Computer Science Applications
  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Action-Based Scheduling: Leveraging App Interactivity for Scheduler Efficiency'. Together they form a unique fingerprint.

Cite this