A virtual scalable model of the Hepatic Lobule for acetaminophen hepatotoxicity prediction

Stelian Camara Dit Pinto, Jalal Cherkaoui, Debarshi Ghosh, Valentine Cazaubon, Kenza E. Benzeroual, Steven M. Levine, Mohammed Cherkaoui, Gagan K. Sood, Sharmila Anandasabapathy, Sadhna Dhingra, John M. Vierling, Nicolas R. Gallo

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Addressing drug-induced liver injury is crucial in drug development, often causing Phase III trial failures and market withdrawals. Traditional animal models fail to predict human liver toxicity accurately. Virtual twins of human organs present a promising solution. We introduce the Virtual Hepatic Lobule, a foundational element of the Living Liver, a multi-scale liver virtual twin. This model integrates blood flow dynamics and an acetaminophen-induced injury model to predict hepatocyte injury patterns specific to patients. By incorporating metabolic zonation, our predictions align with clinical zonal hepatotoxicity observations. This methodology advances the development of a human liver virtual twin, aiding in the prediction and validation of drug-induced liver injuries.

Original languageEnglish (US)
Article number340
Journalnpj Digital Medicine
Volume7
Issue number1
DOIs
StatePublished - Dec 2024

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Health Informatics
  • Computer Science Applications
  • Health Information Management

Fingerprint

Dive into the research topics of 'A virtual scalable model of the Hepatic Lobule for acetaminophen hepatotoxicity prediction'. Together they form a unique fingerprint.

Cite this