A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro

Fransisca Leonard, Eva Maria Collnot, Claus Michael Lehr

Research output: Contribution to journalArticle

135 Scopus citations

Abstract

While epithelial cell culture models (e.g., Caco-2 cell line) are widely used to assess the absorption of drug molecules across healthy intestinal mucosa, there are no suitable in vitro models of the intestinal barrier in the state of inflammation. Thus development of novel drugs and formulations for the treatment of inflammatory bowel disease is largely bound to animal models. We here report on the development of a complex in vitro model of the inflamed intestinal mucosa, starting with the selection of suitable enterocyte cell line and proinflammatory stimulus and progressing to the setup and characterization of a three-dimensional coculture of human intestinal epithelial cells and immunocompetent macrophages and dendritic cells. In the 3D setup, controlled inflammation can be induced allowing the mimicking of pathophysiological changes occurring in vivo in the inflamed intestine. Different combinations of proinflammatory stimuli (lipopolysaccharides from Escherichia coli and Salmonella typhimurium, interleukin-1β, interferon-γ) and intestinal epithelial cell lines (Caco-2, HT-29, T84) were evaluated, and only Caco-2 cells were responsive to stimulation, with interleukin-1β being the strongest stimulator. Caco-2 cells responded to the proinflammatory stimulus with a moderate upregulation of proinflammatory markers and a slight, but significant, decrease (20%) of transepithelial electrical resistance (TEER) indicating changes in the epithelial barrier properties. Setting up the coculture model, macrophages and dendritic cells derived from periphery blood monocytes were embedded in a collagen layer on a Transwell filter insert and Caco-2 cells were seeded atop. Even in the presence of immunocompetent cells Caco-2 cells formed a tight monolayer. Addition of IL-1β increased inflammatory cytokine response more strongly compared to Caco-2 single culture and stimulated immunocompetent cells proved to be highly active in sampling apically applied nanoparticles. Thus the 3D coculture provides additional complexity and information compared to the stimulated single cell model. The coculture system may serve as a valuable tool for developing drugs and formulations for the treatment of inflammatory bowel diseases, as well as for studying the interaction of xenobiotics and nanoparticles with the intestinal epithelial barrier in the state of inflammation.

Original languageEnglish (US)
Pages (from-to)2103-2119
Number of pages17
JournalMolecular pharmaceutics
Volume7
Issue number6
DOIs
StatePublished - Dec 6 2010

ASJC Scopus subject areas

  • Molecular Medicine
  • Pharmaceutical Science
  • Drug Discovery

Fingerprint Dive into the research topics of 'A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro'. Together they form a unique fingerprint.

Cite this