A single amino acid replacement in the sensor kinase lias contributes to a carrier phenotype in group a streptococcus

Anthony R. Flores, Brittany E. Jewell, Dedipya Yelamanchili, Randall J. Olsen, James M. Musser

Research output: Contribution to journalArticle

12 Scopus citations

Abstract

Despite the high frequency of asymptomatic carriage of bacterial pathogens, we understand little about the bacterial molecular genetic underpinnings of this phenomenon. To obtain new information about the molecular genetic mechanisms underlying carriage of group A Streptococcus (GAS), we performed whole-genome sequencing of GAS strains recovered from a single individual during acute pharyngitis and subsequent asymptomatic carriage. We discovered that compared to the initial infection isolate, the strain recovered during asymptomatic carriage contained three single nucleotide polymorphisms, one of which was in a highly conserved region of a gene encoding a sensor kinase, liaS, resulting in an arginine-to-glycine amino acid replacement at position 135 of LiaS (LiaSR135G). Using gene replacement, we demonstrate that introduction of the carrier allele (liaSR135G) into a serotype-matched invasive strain increased mouse nasopharyngeal colonization and adherence to cultured human epithelial cells. The carrier mutation also resulted in a reduced ability to grow in human blood and reduced virulence in a mouse model of necrotizing fasciitis. Repair of the mutation in the GAS carrier strain restored virulence and decreased adherence to cultured human epithelial cells. We also provide evidence that the carrier mutation alters the GAS transcriptome, including altered transcription of GAS virulence genes, providing a potential mechanism for the pleiotropic phenotypic effects. Our data obtained using isogenic strains suggest that the liaSR135G mutation in the carrier strain contributes to the transition from disease to asymptomatic carriage and provides new information about this poorly described regulatory system in GAS.

Original languageEnglish (US)
Pages (from-to)4237-4246
Number of pages10
JournalInfection and Immunity
Volume83
Issue number11
DOIs
StatePublished - 2015

ASJC Scopus subject areas

  • Parasitology
  • Microbiology
  • Immunology
  • Infectious Diseases

Fingerprint Dive into the research topics of 'A single amino acid replacement in the sensor kinase lias contributes to a carrier phenotype in group a streptococcus'. Together they form a unique fingerprint.

Cite this