A self-referencing microelectrode for real time measurements of silver flux

E. S. McLamore, M. C. Stensberg, M. S. Sepúlveda, W. Zhang, M. K. Banks, D. M. Porterfield

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Silver has many diverse applications, including use as a biocide for biomedical devices and potable water systems. Increased use of silver has led to a demand for technologies which can measure dissolved species in situ. In addition to the development of tools such as electrodes for measuring dissolved silver concentration, techniques are needed which can quantify spatially and temporally dynamic transport of silver. For the first time, we demonstrate the use of a self-referencing Ag+-selective microelectrode for non-invasively quantifying Ag+ flux in biomedical and environmental applications. Characterization of sensor performance included detailed analysis of microelectrode sensitivity, selectivity, response time, limit of detection, and linear range. Liquid membrane microelectrode performance was similar to modern solid state electrodes, and in self-referencing modality differential signal acquisition was sufficient for use in a wide range of applications. Self-referencing microelectrodes were used to profile concentration boundary layer transport, providing a "snapshot" of microgradients in the unstirred boundary layer. In addition, time resolved, non-invasive measurements were used to quantify Ag+ release rate (efflux) from two common antimicrobial biomedical devices, and Ag+ uptake rate (influx) to a mature Pseudomonas aeruginosa biofilm during disinfection. Use of this technique will increase our understanding of silver transport in engineered antimicrobial devices and systems. In addition, the technique may be used to better our understanding of Ag+ release from nanoparticles.

Original languageEnglish (US)
Pages (from-to)445-452
Number of pages8
JournalSensors and Actuators, B: Chemical
Issue number2
StatePublished - Apr 20 2011


  • Antimicrobial
  • Disinfection
  • Flux
  • Non-invasive
  • Self-referencing
  • Silver

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Electrical and Electronic Engineering
  • Materials Chemistry


Dive into the research topics of 'A self-referencing microelectrode for real time measurements of silver flux'. Together they form a unique fingerprint.

Cite this