TY - JOUR
T1 - A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements
AU - Kilicarslan, Atilla
AU - Grossman, Robert G.
AU - Contreras-Vidal, Jose Luis
N1 - Funding Information:
Acknowledgments: This work was supported in part by the National Institute of Neurological Disorders and Stroke (NINDS) grant # R01NS075889-01, The Cullen Foundation, and the Mission Connect project of TIRR Foundation.
Publisher Copyright:
© 2016 IOP Publishing Ltd.
PY - 2016/2/9
Y1 - 2016/2/9
N2 - Objective. Non-invasive measurement of human neural activity based on the scalp electroencephalogram (EEG) allows for the development of biomedical devices that interface with the nervous system for scientific, diagnostic, therapeutic, or restorative purposes. However, EEG recordings are often considered as prone to physiological and non-physiological artifacts of different types and frequency characteristics. Among them, ocular artifacts and signal drifts represent major sources of EEG contamination, particularly in real-time closed-loop brain-machine interface (BMI) applications, which require effective handling of these artifacts across sessions and in natural settings. Approach. We extend the usage of a robust adaptive noise cancelling (ANC) scheme ( filtering) for removal of eye blinks, eye motions, amplitude drifts and recording biases simultaneously. We also characterize the volume conduction, by estimating the signal propagation levels across all EEG scalp recording areas due to ocular artifact generators. We find that the amplitude and spatial distribution of ocular artifacts vary greatly depending on the electrode location. Therefore, fixed filtering parameters for all recording areas would naturally hinder the true overall performance of an ANC scheme for artifact removal. We treat each electrode as a separate sub-system to be filtered, and without the loss of generality, they are assumed to be uncorrelated and uncoupled. Main results. Our results show over 95-99.9% correlation between the raw and processed signals at non-ocular artifact regions, and depending on the contamination profile, 40-70% correlation when ocular artifacts are dominant. We also compare our results with the offline independent component analysis and artifact subspace reconstruction methods, and show that some local quantities are handled better by our sample-adaptive real-time framework. Decoding performance is also compared with multi-day experimental data from 2 subjects, totaling 19 sessions, with and without filtering of the raw data. Significance. The proposed method allows real-time adaptive artifact removal for EEG-based closed-loop BMI applications and mobile EEG studies in general, thereby increasing the range of tasks that can be studied in action and context while reducing the need for discarding data due to artifacts. Significant increase in decoding performances also justify the effectiveness of the method to be used in real-time closed-loop BMI applications.
AB - Objective. Non-invasive measurement of human neural activity based on the scalp electroencephalogram (EEG) allows for the development of biomedical devices that interface with the nervous system for scientific, diagnostic, therapeutic, or restorative purposes. However, EEG recordings are often considered as prone to physiological and non-physiological artifacts of different types and frequency characteristics. Among them, ocular artifacts and signal drifts represent major sources of EEG contamination, particularly in real-time closed-loop brain-machine interface (BMI) applications, which require effective handling of these artifacts across sessions and in natural settings. Approach. We extend the usage of a robust adaptive noise cancelling (ANC) scheme ( filtering) for removal of eye blinks, eye motions, amplitude drifts and recording biases simultaneously. We also characterize the volume conduction, by estimating the signal propagation levels across all EEG scalp recording areas due to ocular artifact generators. We find that the amplitude and spatial distribution of ocular artifacts vary greatly depending on the electrode location. Therefore, fixed filtering parameters for all recording areas would naturally hinder the true overall performance of an ANC scheme for artifact removal. We treat each electrode as a separate sub-system to be filtered, and without the loss of generality, they are assumed to be uncorrelated and uncoupled. Main results. Our results show over 95-99.9% correlation between the raw and processed signals at non-ocular artifact regions, and depending on the contamination profile, 40-70% correlation when ocular artifacts are dominant. We also compare our results with the offline independent component analysis and artifact subspace reconstruction methods, and show that some local quantities are handled better by our sample-adaptive real-time framework. Decoding performance is also compared with multi-day experimental data from 2 subjects, totaling 19 sessions, with and without filtering of the raw data. Significance. The proposed method allows real-time adaptive artifact removal for EEG-based closed-loop BMI applications and mobile EEG studies in general, thereby increasing the range of tasks that can be studied in action and context while reducing the need for discarding data due to artifacts. Significant increase in decoding performances also justify the effectiveness of the method to be used in real-time closed-loop BMI applications.
UR - http://www.scopus.com/inward/record.url?scp=84962473544&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84962473544&partnerID=8YFLogxK
U2 - 10.1088/1741-2560/13/2/026013
DO - 10.1088/1741-2560/13/2/026013
M3 - Article
C2 - 26863159
AN - SCOPUS:84962473544
SN - 1741-2560
VL - 13
JO - Journal of neural engineering
JF - Journal of neural engineering
IS - 2
M1 - 026013
ER -