A potent and specific immunotoxin for tumor cells expressing disialoganglioside GD2

Kalpana Mujoo, Ralph A. Reisfeld, Lawrence Cheung, Michael G. Rosenblum

Research output: Contribution to journalArticle

24 Scopus citations

Abstract

Monoclonal antibody 14G2a (anti-GD2) reacts with cell lines and tumor tissues of neuroectodermal origin that express disialoganglioside GD2. mAb 14G2a was coupled to the ribosome-inactivating plant toxin gelonin with the heterobifunctional cross-linking reagent N-succinimidyl-3(2-pyridyldithio)propionate. The activity of the immunotoxin was assessed by a cell-free translation assay that confirmed the presence of active gelonin coupled to 14G2a. Data from an enzyme-linked immunosorbent assay demonstrated the specificity and immunoreactivity of the 14G2a-gelonin immunotoxin, which was identical to that of native 14G2a. Assays for complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) revealed that these functional properties of the native 14G2a antibody were also preserved in the 14G2a-gelonin immunotoxin. The gelonin-14G2a immunotoxin was directly cytotoxic to human melanoma (A375-M and AAB-527) cells and was 1000-fold more active than native gelonin in inhibiting the growth of human melanoma cells in vitro. The augmentation of tumor cell killing of 14G2a-gelonin immunotoxin was examined with several lysosomotropic compounds. Chloroquine and monensin, when combined with 14G2a-gelonin immunotoxin, augmented its cytotoxicity more than 10-fold. Biological response modifiers such as tumor necrosis factor α and interferon α and chemotherapeutic agents such as cisplatinum and N,N′-bis(2-chloroethyl)-N-nitrosourea (carmustine) augmented the cytotoxicity of 14G2a-gelonin 4- to 5-fold. The results of these studies suggest that 14G2a-gelonin may operate directly by both cytotoxic efforts and indirectly by mediating both ADCC and CDC activity against tumor cells; thus it may prove useful in the future for therapy of human neuroectodermal tumors.

Original languageEnglish (US)
Pages (from-to)198-204
Number of pages7
JournalCancer Immunology Immunotherapy
Volume34
Issue number3
DOIs
StatePublished - May 1 1991

Keywords

  • Cytotoxicity
  • Immunotoxins
  • Monoclonal antibodies
  • Toxins

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology
  • Oncology
  • Cancer Research

Fingerprint Dive into the research topics of 'A potent and specific immunotoxin for tumor cells expressing disialoganglioside GD<sub>2</sub>'. Together they form a unique fingerprint.

Cite this