Abstract
OCRL, whose mutations are responsible for Lowe syndrome and Dent disease, and INPP5B are two similar proteins comprising a central inositol 5-phosphatase domain followed by an ASH and a RhoGAP-like domain. Their divergent NH2-terminal portions remain uncharacterized. We show that the NH2-terminal region of OCRL, but not of INPP5B, binds clathrin heavy chain. OCRL, which in contrast to INPP5B visits late stage endocytic clathrin-coated pits, was earlier shown to contain another binding site for clathrin in its COOH-terminal region. NMR structure determination further reveals that despite their primary sequence dissimilarity, the NH2-terminal portions of both OCRL and INPP5B contain a PH domain. The novel clathrin-binding site in OCRL maps to an unusual clathrin-box motif located in a loop of the PH domain, whose mutations reduce recruitment efficiency of OCRL to coated pits. These findings suggest an evolutionary pressure for a specialized function of OCRL in bridging phosphoinositide metabolism to clathrin-dependent membrane trafficking.
Original language | English (US) |
---|---|
Pages (from-to) | 1831-1842 |
Number of pages | 12 |
Journal | EMBO Journal |
Volume | 28 |
Issue number | 13 |
DOIs | |
State | Published - Jul 8 2009 |
Keywords
- AP-2
- APPL
- Endocytosis
- PI(4,5)P
- Rab5
ASJC Scopus subject areas
- Neuroscience(all)
- Molecular Biology
- Biochemistry, Genetics and Molecular Biology(all)
- Immunology and Microbiology(all)