Abstract
Background-Macrophage activation plays a crucial role in regulating adipose tissue inflammation and is a major contributor to the pathogenesis of obesity-associated cardiovascular diseases. On various types of stimuli, macrophages respond with either classic (M1) or alternative (M2) activation. M1-and M2-mediated signaling pathways and corresponding cytokine production profiles are not completely understood. The discovery of microRNAs provides a new opportunity to understand this complicated but crucial network for macrophage activation and adipose tissue function. Methods and Results-We have examined the activity of microRNA-223 (miR-223) and its role in controlling macrophage functions in adipose tissue inflammation and systemic insulin resistance. miR-223 mice on a high-fat diet exhibited an increased severity of systemic insulin resistance compared with wild-type mice that was accompanied by a marked increase in adipose tissue inflammation. The specific regulatory effects of miR-223 in myeloid cell-mediated regulation of adipose tissue inflammation and insulin resistance were then confirmed by transplantation analysis. Moreover, using bone marrow-derived macrophages, we demonstrated that miR-223 is a novel regulator of macrophage polarization, which suppresses classic proinflammatory pathways and enhances the alternative antiinflammatory responses. In addition, we identified Pknox1 as a genuine miR-223 target gene and an essential regulator for macrophage polarization. CONCLUSION-: For the first time, this study demonstrates that miR-223 acts to inhibit Pknox1, suppressing proinflammatory activation of macrophages; thus, it is a crucial regulator of macrophage polarization and protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance.
Original language | English (US) |
---|---|
Pages (from-to) | 2892-2903 |
Number of pages | 12 |
Journal | Circulation |
Volume | 125 |
Issue number | 23 |
DOIs | |
State | Published - Jun 12 2012 |
Keywords
- adipose tissue
- insulin resistance
- macrophages
- microRNAs
ASJC Scopus subject areas
- Cardiology and Cardiovascular Medicine
- Physiology (medical)