A new concept for cancer therapy: Out-competing the aggressor

Thomas S. Deisboeck, Zhihui Wang

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Cancer expansion depends on host organ conditions that permit growth. Since such microenvironmental nourishment is limited we argue here that an autologous, therapeutically engineered and faster metabolizing cell strain could potentially out-compete native cancer cell populations for available resources which in turn should contain further cancer growth. This hypothesis aims on turning cancer progression, and its microenvironmental dependency, into a therapeutic opportunity. To illustrate our concept, we developed a three-dimensional computational model that allowed us to investigate the growth dynamics of native tumor cells mixed with genetically engineered cells that exhibit a higher proliferation rate. The simulation results confirm in silico efficacy of such therapeutic cells to combating cancer cells on site in that they can indeed control tumor growth once their proliferation rate exceeds a certain level. While intriguing from a theoretical perspective, this bold, innovative ecology-driven concept bears some significant challenges that warrant critical discussion in the community for further refinement.

Original languageEnglish (US)
Article number19
JournalCancer Cell International
Volume8
DOIs
StatePublished - Dec 12 2008

ASJC Scopus subject areas

  • Oncology
  • Genetics
  • Cancer Research

Fingerprint

Dive into the research topics of 'A new concept for cancer therapy: Out-competing the aggressor'. Together they form a unique fingerprint.

Cite this