TY - JOUR
T1 - A longitudinal study of total and phosphorylated α-synuclein with other biomarkers in cerebrospinal fluid of Alzheimer's disease and mild cognitive impairment
AU - Wang, Hua
AU - Stewart, Tessandra
AU - Toledo, Jon B.
AU - Ginghina, Carmen
AU - Tang, Lu
AU - Atik, Anzari
AU - Aro, Patrick
AU - Shaw, Leslie M.
AU - Trojanowski, John Q.
AU - Galasko, Douglas R.
AU - Edland, Steven
AU - Jensen, Poul H.
AU - Shi, Min
AU - Zhang, Jing
N1 - Funding Information:
Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; Neu-roRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (http://www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.
Funding Information:
We deeply appreciate those who have donated blood for our studies. This study was supported by grants from the National Institutes of Health (NIH) (U01 NS082137 and U01 NS091272 to JZ).
Publisher Copyright:
© 2018 - IOS Press and the authors. All rights reserved.
PY - 2018
Y1 - 2018
N2 - Alzheimer's disease (AD) features a dynamic sequence of amyloid deposition, neurodegeneration, and cognitive impairment. A significant fraction of AD brains also displays Lewy body pathology, suggesting that addition of classically Parkinson's disease-related proteins to the AD biomarker panel may be of value. To determine whether addition of cerebrospinal fluid (CSF) total α-synuclein and its form phosphorylated at S129 (pS129) to the AD biomarker panel [Amyloid-β1-42 (Aβ42), tau, and phosphorylated tau (p-tau181)] improves its performance, we examined CSF samples collected longitudinally up to 7 years as part of the Alzheimer's Disease Neuroimaging Initiative. From 87 AD, 177 mild cognitive impairment (MCI), and 104 age-matched healthy controls, 792 baseline and longitudinal CSF samples were tested for total α-synuclein, pS129, Aβ42, tau, and p-tau181. pS129, but not total α-synuclein, was weakly associated with diagnosis at baseline when t-tau/Aβ42 was included in the statistical model (β = 0.0026, p = 0.041, 95% CI [(0.0001)-(0.005)]). CSF α-synuclein predicted Alzheimer's Disease Assessment Scale-Cognitive (β = -0.59, p = 0.0015, 95% CI [(-0.96)-(-0.23)]), memory (β = 0.4, p = 0.00025, 95% CI [(0.16)-(0.59)]), and executive (0.62,<0.0001, 95% CI [(0.31)-(0.93)]) function composite scores, and progression from MCI to AD (β = 0.019, p = 0.0011, 95% CI [(0.002)-(0.20)]). pS129 was associated with executive function (β = -2.55, p = 0.0085, 95% CI [(-4.45)-(-0.66)]). Lower values in the mismatch between α-synuclein and p-tau181 predicted faster cognitive decline (β = 0.64, p = 0.0012, 95% CI [(0.48)-(0.84)]). Longitudinal biomarker changes did not differ between groups, and may not reflect AD progression. The α-synuclein-p-tau181-Mismatch could better predict longitudinal cognitive changes than classical AD markers alone, and its pathological correlates should be investigated further.
AB - Alzheimer's disease (AD) features a dynamic sequence of amyloid deposition, neurodegeneration, and cognitive impairment. A significant fraction of AD brains also displays Lewy body pathology, suggesting that addition of classically Parkinson's disease-related proteins to the AD biomarker panel may be of value. To determine whether addition of cerebrospinal fluid (CSF) total α-synuclein and its form phosphorylated at S129 (pS129) to the AD biomarker panel [Amyloid-β1-42 (Aβ42), tau, and phosphorylated tau (p-tau181)] improves its performance, we examined CSF samples collected longitudinally up to 7 years as part of the Alzheimer's Disease Neuroimaging Initiative. From 87 AD, 177 mild cognitive impairment (MCI), and 104 age-matched healthy controls, 792 baseline and longitudinal CSF samples were tested for total α-synuclein, pS129, Aβ42, tau, and p-tau181. pS129, but not total α-synuclein, was weakly associated with diagnosis at baseline when t-tau/Aβ42 was included in the statistical model (β = 0.0026, p = 0.041, 95% CI [(0.0001)-(0.005)]). CSF α-synuclein predicted Alzheimer's Disease Assessment Scale-Cognitive (β = -0.59, p = 0.0015, 95% CI [(-0.96)-(-0.23)]), memory (β = 0.4, p = 0.00025, 95% CI [(0.16)-(0.59)]), and executive (0.62,<0.0001, 95% CI [(0.31)-(0.93)]) function composite scores, and progression from MCI to AD (β = 0.019, p = 0.0011, 95% CI [(0.002)-(0.20)]). pS129 was associated with executive function (β = -2.55, p = 0.0085, 95% CI [(-4.45)-(-0.66)]). Lower values in the mismatch between α-synuclein and p-tau181 predicted faster cognitive decline (β = 0.64, p = 0.0012, 95% CI [(0.48)-(0.84)]). Longitudinal biomarker changes did not differ between groups, and may not reflect AD progression. The α-synuclein-p-tau181-Mismatch could better predict longitudinal cognitive changes than classical AD markers alone, and its pathological correlates should be investigated further.
KW - Alzheimer's disease
KW - Biomarkers
KW - Cerebrospinal fluid
KW - Mild cognitive impairment
KW - PS129-α-synuclein
KW - α-synuclein
UR - http://www.scopus.com/inward/record.url?scp=85048173895&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048173895&partnerID=8YFLogxK
U2 - 10.3233/JAD-171013
DO - 10.3233/JAD-171013
M3 - Article
C2 - 29376878
AN - SCOPUS:85048173895
VL - 61
SP - 1541
EP - 1553
JO - Journal of Alzheimer's Disease
JF - Journal of Alzheimer's Disease
SN - 1387-2877
IS - 4
ER -