Abstract
Background: Peripheral Artery Disease (PAD) is an atherosclerotic disorder that leads to impaired lumen patency through intimal hyperplasia and the build-up of plaques, mainly localized in areas of disturbed flow. Computational models can provide valuable insights in the pathogenesis of atherosclerosis and act as a predictive tool to optimize current interventional techniques. Our hypothesis is that a reliable predictive model must include the atherosclerosis development history. Accordingly, we developed a multiscale modeling framework of atherosclerosis that replicates the hemodynamic-driven arterial wall remodeling and plaque formation. Methods: The framework was based on the coupling of Computational Fluid Dynamics (CFD) simulations with an Agent-Based Model (ABM). The CFD simulation computed the hemodynamics in a 3D artery model, while 2D ABMs simulated cell, Extracellular Matrix (ECM) and lipid dynamics in multiple vessel cross-sections. A sensitivity analysis was also performed to evaluate the oscillation of the ABM output to variations in the inputs and to identify the most influencing ABM parameters. Results: Our multiscale model qualitatively replicated both the physiologic and pathologic arterial configuration, capturing histological-like features. The ABM outputs were mostly driven by cell and ECM dynamics, largely affecting the lumen area. A subset of parameters was found to affect the final lipid core size, without influencing cell/ECM or lumen area trends. Conclusion: The fully coupled CFD-ABM framework described atherosclerotic morphological and compositional changes triggered by a disturbed hemodynamics.
Original language | English (US) |
---|---|
Article number | 103623 |
Pages (from-to) | 103623 |
Journal | Computers in Biology and Medicine |
Volume | 118 |
DOIs | |
State | Published - Mar 1 2020 |
Keywords
- Agent-based model
- Atherosclerosis
- Computer modeling
- ECM
- Hemodynamics
- Lipid plaque
- Multiscale model
- Remodeling
- SMC
- Wall shear stress
ASJC Scopus subject areas
- Computer Science Applications
- Health Informatics