A framework for informing segmentation of in vivo MRI with information derived from ex vivo imaging: Application in the medial temporal lobe

Paul A. Yushkevich, Laura Wisse, Daniel Adler, Ranjit Ittyerah, John B. Pluta, John L. Robinson, Theresa Schuck, John Q. Trojanowski, Murray Grossman, John A. Detre, Mark A. Elliott, Jon B. Toledo, Weixia Liu, Stephen Pickup, Sandhitsu R. Das, David A. Wolk

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Automatic segmentation of cortical and subcortical structures is commonplace in brain MRI literature and is frequently used as the first step towards quantitative analysis of structural and functional neuroimaging. Most approaches to brain structure segmentation are based on propagation of anatomical information from example MRI datasets, called atlases or templates, that are manually labeled by experts. The accuracy of automatic segmentation is usually validated against the 'bronze' standard of manual segmentation of test MRI datasets. However, good performance vis-a-vis manual segmentation does not imply accuracy relative to the underlying true anatomical boundaries. In the context of segmentation of hippocampal subfields and functionally related medial temporal lobe cortical subregions, we explore the challenges associated with validating existing automatic segmentation techniques against underlying histologically-derived anatomical 'gold' standard; and, further, developing automatic in vivo MRI segmentation techniques informed by histological imaging.

Original languageEnglish (US)
Title of host publication2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6014-6017
Number of pages4
ISBN (Electronic)9781457702204
DOIs
StatePublished - Oct 13 2016
Event38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States
Duration: Aug 16 2016Aug 20 2016

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2016-October
ISSN (Print)1557-170X

Other

Other38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
Country/TerritoryUnited States
CityOrlando
Period8/16/168/20/16

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'A framework for informing segmentation of in vivo MRI with information derived from ex vivo imaging: Application in the medial temporal lobe'. Together they form a unique fingerprint.

Cite this