Abstract
In this paper, we focus on two challenges which offset the promise of sparse signal representation, sensing, and recovery. First, real-world signals can seldom be described as perfectly sparse vectors in a known basis, and traditionally used random measurement schemes are seldom optimal for sensing them. Second, existing signal recovery algorithms are usually not fast enough to make them applicable to real-time problems. In this paper, we address these two challenges by presenting a novel framework based on deep learning. For the first challenge, we cast the problem of finding informative measurements by using a maximum likelihood (ML) formulation and show how we can build a data-driven dimensionality reduction protocol for sensing signals using convolutional architectures. For the second challenge, we discuss and analyze a novel parallelization scheme and show it significantly speeds-up the signal recovery process. We demonstrate the significant improvement our method obtains over competing methods through a series of experiments.
Original language | English (US) |
---|---|
State | Published - 2019 |
Event | 7th International Conference on Learning Representations, ICLR 2019 - New Orleans, United States Duration: May 6 2019 → May 9 2019 |
Other
Other | 7th International Conference on Learning Representations, ICLR 2019 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 5/6/19 → 5/9/19 |
ASJC Scopus subject areas
- Education
- Computer Science Applications
- Linguistics and Language
- Language and Linguistics