3D Printing, Computational Modeling, and Artificial Intelligence for Structural Heart Disease

Dee Dee Wang, Zhen Qian, Marija Vukicevic, Sandy Engelhardt, Arash Kheradvar, Chuck Zhang, Stephen H. Little, Johan Verjans, Dorin Comaniciu, William W. O'Neill, Mani A. Vannan

Research output: Contribution to journalReview articlepeer-review

66 Scopus citations


Structural heart disease (SHD) is a new field within cardiovascular medicine. Traditional imaging modalities fall short in supporting the needs of SHD interventions, as they have been constructed around the concept of disease diagnosis. SHD interventions disrupt traditional concepts of imaging in requiring imaging to plan, simulate, and predict intraprocedural outcomes. In transcatheter SHD interventions, the absence of a gold-standard open cavity surgical field deprives physicians of the opportunity for tactile feedback and visual confirmation of cardiac anatomy. Hence, dependency on imaging in periprocedural guidance has led to evolution of a new generation of procedural skillsets, concept of a visual field, and technologies in the periprocedural planning period to accelerate preclinical device development, physician, and patient education. Adaptation of 3-dimensional (3D) printing in clinical care and procedural planning has demonstrated a reduction in early-operator learning curve for transcatheter interventions. Integration of computation modeling to 3D printing has accelerated research and development understanding of fluid mechanics within device testing. Application of 3D printing, computational modeling, and ultimately incorporation of artificial intelligence is changing the landscape of physician training and delivery of patient-centric care. Transcatheter structural heart interventions are requiring in-depth periprocedural understanding of cardiac pathophysiology and device interactions not afforded by traditional imaging metrics.

Original languageEnglish (US)
Pages (from-to)41-60
Number of pages20
JournalJACC: Cardiovascular Imaging
Issue number1
Early online dateAug 25 2020
StatePublished - Jan 2021


  • 3D printing
  • artificial intelligence
  • computational modeling
  • computed tomography
  • left atrial appendage
  • structural heart disease
  • transcatheter aortic valve replacement
  • transcatheter mitral valve replacement
  • transesophageal echocardiogram

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging
  • Cardiology and Cardiovascular Medicine


Dive into the research topics of '3D Printing, Computational Modeling, and Artificial Intelligence for Structural Heart Disease'. Together they form a unique fingerprint.

Cite this