TY - JOUR
T1 - 14-3-3ε plays a role in cardiac ventricular compaction by regulating the cardiomyocyte cell cycle
AU - Kosaka, Yasuhiro
AU - Cieslik, Katarzyna A.
AU - Li, Ling
AU - Lezin, George
AU - Maguire, Colin T.
AU - Saijoh, Yukio
AU - Toyo-oka, Kazuhito
AU - Gambello, Michael J.
AU - Vatta, Matteo
AU - Wynshaw-Boris, Anthony
AU - Baldini, Antonio
AU - Yost, H. Joseph
AU - Brunelli, Luca
PY - 2012/12
Y1 - 2012/12
N2 - Trabecular myocardium accounts for the majority of the ventricles during early cardiogenesis, but compact myocardium is the primary component at later developmental stages. Elucidation of the genes regulating compact myocardium development is essential to increase our understanding of left ventricular noncompaction (LVNC), a cardiomyopathy characterized by increased ratios of trabecular to compact myocardium. 14-3-3ε is an adapter protein expressed in the lateral plate mesoderm, but its in vivo cardiac functions remain to be defined. Here we show that 14-3-3ε is expressed in the developing mouse heart as well as in cardiomyocytes. 14-3-3ε deletion did not appear to induce compensation by other 14-3-3ε isoforms but led to ventricular noncompaction, with features similar to LVNC, resulting from a selective reduction in compact myocardium thickness. Abnormal compaction derived from a 50% decrease in cardiac proliferation as a result of a reduced number of cardiomyocytes in G2/M and the accumulation of cardiomyocytes in the G0/G1 phase of the cell cycle. These defects originated from downregulation of cyclin E1 and upregulation of p27kip1, possibly through both transcriptional and posttranslational mechanisms. Our work shows that 14-3-3ε regulates cardiogenesis and growth of the compact ventricular myocardium by modulating the cardiomyocyte cell cycle via both cyclin E1 and p27kip1. These data are consistent with the long-held view that human LVNC may result from compaction arrest, and they implicate 14-3-3ε as a new candidate gene in congenital human cardiomyopathies.
AB - Trabecular myocardium accounts for the majority of the ventricles during early cardiogenesis, but compact myocardium is the primary component at later developmental stages. Elucidation of the genes regulating compact myocardium development is essential to increase our understanding of left ventricular noncompaction (LVNC), a cardiomyopathy characterized by increased ratios of trabecular to compact myocardium. 14-3-3ε is an adapter protein expressed in the lateral plate mesoderm, but its in vivo cardiac functions remain to be defined. Here we show that 14-3-3ε is expressed in the developing mouse heart as well as in cardiomyocytes. 14-3-3ε deletion did not appear to induce compensation by other 14-3-3ε isoforms but led to ventricular noncompaction, with features similar to LVNC, resulting from a selective reduction in compact myocardium thickness. Abnormal compaction derived from a 50% decrease in cardiac proliferation as a result of a reduced number of cardiomyocytes in G2/M and the accumulation of cardiomyocytes in the G0/G1 phase of the cell cycle. These defects originated from downregulation of cyclin E1 and upregulation of p27kip1, possibly through both transcriptional and posttranslational mechanisms. Our work shows that 14-3-3ε regulates cardiogenesis and growth of the compact ventricular myocardium by modulating the cardiomyocyte cell cycle via both cyclin E1 and p27kip1. These data are consistent with the long-held view that human LVNC may result from compaction arrest, and they implicate 14-3-3ε as a new candidate gene in congenital human cardiomyopathies.
UR - http://www.scopus.com/inward/record.url?scp=84871908867&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84871908867&partnerID=8YFLogxK
U2 - 10.1128/MCB.00829-12
DO - 10.1128/MCB.00829-12
M3 - Article
C2 - 23071090
AN - SCOPUS:84871908867
SN - 0270-7306
VL - 32
SP - 5089
EP - 5102
JO - Molecular and Cellular Biology
JF - Molecular and Cellular Biology
IS - 24
ER -