TY - JOUR
T1 - γ-glutamyl leukotrienase, a novel endothelial membrane protein, is specifically responsible for leukotriene D4 formation in vivo
AU - Han, Bing
AU - Luo, Guoyang
AU - Shi, Zheng-Zheng
AU - Barrios, Roberto
AU - Atwood, Donna
AU - Liu, Weili
AU - Habib, Geetha M.
AU - Sifers, Richard N.
AU - Corry, David
AU - Lieberman, Michael W.
N1 - Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2002
Y1 - 2002
N2 - The metabolism of cysteinyl leukotrienes in vivo and the pathophysiological effects of individual cysteinyl leukotrienes are primarily unknown. Recently we identified an additional member of the γ-glutamyl transpeptidase (GGT) family, γ-glutamyl leukotrienase (GGL), and developed mice deficient in this enzyme. Here we show that in vivo GGL, and not GGT as previously believed, is primarily responsible for conversion of leukotriene C4 to leukotriene D4, the most potent of the cysteinyl leukotrienes and the immediate precursor of leukotriene E4. GGL is a glycoprotein consisting of two polypeptide chains encoded by one gene and is attached at the amino terminus of the heavy chain to endothelial cell membranes. In mice it localizes to capillaries and sinusoids in most organs and in lung to larger vessels as well. In contrast to wild-type and GGT-deficient mice, GGL-deficient mice do not form leukotriene D4 in vivo either in blood when exogenous leukotriene C4 is administered intravenously or in bronchoalveolar lavage fluid of Aspergillus fumigatus extract-induced experimental asthma. Further, GGL-deficient mice show leukotriene C4 accumulation and significantly more airway hyperreponsiveness than wild-type mice in the experimental asthma, and induction of asthma results in increased GGL protein levels and enzymatic activity. Thus GGL plays an important role in leukotriene D4 synthesis in vivo and in inflammatory processes.
AB - The metabolism of cysteinyl leukotrienes in vivo and the pathophysiological effects of individual cysteinyl leukotrienes are primarily unknown. Recently we identified an additional member of the γ-glutamyl transpeptidase (GGT) family, γ-glutamyl leukotrienase (GGL), and developed mice deficient in this enzyme. Here we show that in vivo GGL, and not GGT as previously believed, is primarily responsible for conversion of leukotriene C4 to leukotriene D4, the most potent of the cysteinyl leukotrienes and the immediate precursor of leukotriene E4. GGL is a glycoprotein consisting of two polypeptide chains encoded by one gene and is attached at the amino terminus of the heavy chain to endothelial cell membranes. In mice it localizes to capillaries and sinusoids in most organs and in lung to larger vessels as well. In contrast to wild-type and GGT-deficient mice, GGL-deficient mice do not form leukotriene D4 in vivo either in blood when exogenous leukotriene C4 is administered intravenously or in bronchoalveolar lavage fluid of Aspergillus fumigatus extract-induced experimental asthma. Further, GGL-deficient mice show leukotriene C4 accumulation and significantly more airway hyperreponsiveness than wild-type mice in the experimental asthma, and induction of asthma results in increased GGL protein levels and enzymatic activity. Thus GGL plays an important role in leukotriene D4 synthesis in vivo and in inflammatory processes.
UR - http://www.scopus.com/inward/record.url?scp=0036966306&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036966306&partnerID=8YFLogxK
U2 - 10.1016/S0002-9440(10)64204-6
DO - 10.1016/S0002-9440(10)64204-6
M3 - Article
C2 - 12163373
AN - SCOPUS:0036966306
VL - 161
SP - 481
EP - 490
JO - American Journal of Pathology
JF - American Journal of Pathology
SN - 0002-9440
IS - 2
ER -