γ-glutamyl leukotrienase, a novel endothelial membrane protein, is specifically responsible for leukotriene D4 formation in vivo

Bing Han, Guoyang Luo, Zheng-Zheng Shi, Roberto Barrios, Donna Atwood, Weili Liu, Geetha M. Habib, Richard N. Sifers, David Corry, Michael W. Lieberman

Research output: Contribution to journalArticle

43 Scopus citations

Abstract

The metabolism of cysteinyl leukotrienes in vivo and the pathophysiological effects of individual cysteinyl leukotrienes are primarily unknown. Recently we identified an additional member of the γ-glutamyl transpeptidase (GGT) family, γ-glutamyl leukotrienase (GGL), and developed mice deficient in this enzyme. Here we show that in vivo GGL, and not GGT as previously believed, is primarily responsible for conversion of leukotriene C4 to leukotriene D4, the most potent of the cysteinyl leukotrienes and the immediate precursor of leukotriene E4. GGL is a glycoprotein consisting of two polypeptide chains encoded by one gene and is attached at the amino terminus of the heavy chain to endothelial cell membranes. In mice it localizes to capillaries and sinusoids in most organs and in lung to larger vessels as well. In contrast to wild-type and GGT-deficient mice, GGL-deficient mice do not form leukotriene D4 in vivo either in blood when exogenous leukotriene C4 is administered intravenously or in bronchoalveolar lavage fluid of Aspergillus fumigatus extract-induced experimental asthma. Further, GGL-deficient mice show leukotriene C4 accumulation and significantly more airway hyperreponsiveness than wild-type mice in the experimental asthma, and induction of asthma results in increased GGL protein levels and enzymatic activity. Thus GGL plays an important role in leukotriene D4 synthesis in vivo and in inflammatory processes.

Original languageEnglish (US)
Pages (from-to)481-490
Number of pages10
JournalAmerican Journal of Pathology
Volume161
Issue number2
DOIs
StatePublished - 2002

ASJC Scopus subject areas

  • Pathology and Forensic Medicine

Fingerprint Dive into the research topics of 'γ-glutamyl leukotrienase, a novel endothelial membrane protein, is specifically responsible for leukotriene D<sub>4</sub> formation in vivo'. Together they form a unique fingerprint.

Cite this