Abstract
β-Amyloid deposition and compromised energy metabolism both occur in vulnerable brain regions in Alzheimer's disease. It is not known whether β-amyloid is the cause of impairment of energy metabolism, nor whether impaired energy metabolism is specific to neurons. Our results, using primary neuronal cultures, show that 24-h incubation with Aβ25-35 caused a generalized decrease in the specific activity of mitochondrial enzymes per milligram of cellular protein, induced mitochondrial swelling, and decreased total mitochondrial number. Incubation with Aβ25-35 decreased ATP concentration to 58% of control in neurons and 71% of control in astrocytes. Levels of reduced glutathione were also lowered by Aβ25-35 in both neurons (from 5.1 to 2.9 nmol/mg protein) and astrocytes (from 25.2 to 14.9 nmol/mg protein). We conclude that 24-h treatment with extracellular Aβ25-35 causes mitochondrial dysfunction in both astrocytes and neurons, the latter being more seriously affected. In astrocytes mitochondrial impairment was confined to complex I inhibition, whereas in neurons a generalized loss of mitochondria was seen.
Original language | English (US) |
---|---|
Pages (from-to) | 258-267 |
Number of pages | 10 |
Journal | Neurobiology of Disease |
Volume | 10 |
Issue number | 3 |
DOIs | |
State | Published - 2002 |
Keywords
- 3-amyloid
- Alzheimer's disease
- Astrocyte
- Mitochondria
- Neuron
ASJC Scopus subject areas
- Neurology